FISCHER SYNTHESIS OF 1-, 5-, AND

7-SUBSTITUTED 3-(N-ACYLAMINO)-2-PHENYLINDOLES

N. M. Przheval'skii, N. S. Skvortsova, and I. V. Magedov

Arylhydrazones were obtained by the reaction of arylhydrazines with ω -(N-acylamino)acetophenones and were converted into 3-(N-acylamino)-2-phenylindoles with substituents at positions 1, 5, 6, and 7 by Fischer cyclization.

Keywords: arylhydrazines, arylhydrazones, 3-(N-acylamino)indoles.

The method that we developed for the synthesis of 3-(N-acylamino)-2-phenylindoles by the Fischer cyclization of the phenylhydrazones of ω -(N-acylamino)acetophenones 3, obtained from arythydrazines 1 and acylamino ketones 2, was described earlier [1].

It is known that substituents of various electronic types located in the benzene ring or at the nitrogen atom of the arythydrazones do not have a deciding effect on the [3,3]-sigmatropic rearrangement of the enehydrazines $A \to B$ (see the scheme) to indoles [2-5]. At the same time electron-donating groups as a rule accelerate while electron-accepting groups retard the indolization process [2, 5].

We investigated the electronic and steric effect of substituents in the benzene ring (R = MeO, Me, Cl, F, NO_2) and at the nitrogen atom ($R^1 = Me$, CH_2Ph , Ph) of the arylhydrazones of ω -(N-acylamino)acetophenones **3** on the yield of 2-phenyl-3-(N-acylamino)indoles **4**.

As shown earlier [1], the N-acyl substituent R^2CO in the phenylhydrazones 3 (R, $R^1 = H$) have a substantial effect on the yield of the indoles 4, which varies between 16 and 83%. Therefore, while studying the influence of the substituents R and R^1 in the arylhydrazones 3 on the course of indolization, we compared the yield of the substituted N-acylaminoindole 4 with the yield of the corresponding 3-acylamino-2-phenylindole (4) ($R = R^1 = H$) unsubstituted at positions 1, 5, and 7 (Table 1), where all the indoles were obtained under identical conditions.

In the general case the introduction of substituents into the benzene ring of the arylhydrazones 3 reduces the yields of the acylaminoindoles 4. The reduction in yield is insignificant for indoles with such substituents as R = 5-Me, 5-MeO, and 5-F. Much more noticeable is the decrease of the yield (by more than half) for the 5-chloro-substituted indole 4l. The presence of the strong electron-withdrawing substituent R = 4-NO₂ in the arylhydrazone 3m did not enable us to convert it into 5-nitro-3-(N-acylamino)indole.

The N-acylaminoindoles 4 formed during indolization contain bulky substituents at positions 2 and 3, and it could therefore be expected that additional steric factors would substantially affect the course of the reaction. In fact, the use of N-substituted arylhydrazones 3 (R = Me, CH_2Ph , Ph) greatly reduces the yield of the indoles 4. The introduction of an *ortho* substituent into the phenyl ring of the arylhydrazone 3c (R = 2-Me) has the same effect on the yield of the indole 4c, and this agrees with data in [3, 5].

K. A. Timiryazev Agricultural Academy, Moscow, Russia; e-mail: ibs@ibisc.msk.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 189-195, February, 2003. Original article submitted December 28, 2001; revision submitted July 25, 2002.

The formation of 5,6-dimethyl- and 4,5-dimethyl-3-(acylamino)indoles $\bf 4d$ and $\bf 4d'$ respectively is possible during the indolization of the arythydrazone $\bf 3d$ (R = 3,4-Me₂). We supposed that on account of steric factors 5,6-disubstituted $\bf 4d$ and not 4,5-disubstituted 3-(N-acylamino)indole $\bf 4d'$ (with four substituents in a row in the benzene ring) would be formed preferentially. However, a 1:1 mixture (according to 1 H NMR) of indoles $\bf 4d$ and $\bf 4d'$ with a smaller yield than with the unsubstituted indole was obtained as a result of the reaction.

On the whole the effect of the substituents on the formation of 3-acylaminoindoles coincides with that observed for other types of indolization [3-5].

The data obtained in the present work make it possible to consider the proposed method as a prospective method for the synthesis of derivatives of 3-aminoindoles.

EXPERIMENTAL

The ¹H NMR spectra of compounds **3** and **4** were recorded on a Bruker WM-250 instrument (250 MHz) in acetonitrile-d₃. the reactions were monitored by TLC on Silufol plates in the 6:1 carbon tetrachloride–ethyl acetate system.

Commercial N-(4-methylphenyl)-, N-(2-methylphenyl)-, N-(3,4-dimethylphenyl)-, N-methyl-N-phenyl-, N,N-diphenyl-, N-benzyl-N-phenyl-, N-(4-fluorophenyl)-, N-(4-chlorophenyl)-, and N-(4-nitrophenyl)hydrazines supplied by Lancaster and Aldrich were used. Sodium 2-(4-methoxyphenyl)hydrazine sulfonate was synthesized by the method in [6].

The constants and yields of the synthesized aminoindoles **4** are given in Table 1, and the ¹H NMR spectra are given in Table 2.

The general method for the synthesis of ω -(N-acylamino)acetophenones 2 and their constants and photochemical characteristics were given in [1].

TABLE 1. The Characteristics of the Synthesized Compounds 4

Com-	-1H-indole	R	R ¹	R^2	Empirical formula	Found, % Calculated, %		mp, °C	Yield,*	
- P						С	Н	N		/0
4a	3-(4-Chlorobenzoylamino)-5-methyl-2- phenyl-	5-Me	Н	4-CIC ₆ H ₄	C ₂₂ H ₁₇ ClN ₂ O	73.18 73.23	4.74 4.75	7.69 7.76	167-168	26 (33)
4b	3-(2-Bromobenzoylamino)-5-methyl- 2-phenyl-	5-Me	Н	2-BrC ₆ H ₄	$C_{22}H_{17}BrN_2O$	65.42 65.20	$\frac{4.15}{4.23}$	6.62 6.91	200-201	41
4c	3-[(2-Chlorophenyl)-5-methyl- 4-isoxazolylcarbonylamino]-7-methyl- 2-phenyl-	7-Me	Н	3-(2-Chlorophenyl)-5-methyl- 4-isoxazolyl	C ₂₆ H ₂₀ ClN ₃ O ₂	70.56 70.67	4.60 4.56	9.37 9.51	242-243	30 (62)
4d	3-[(2-Chlorophenyl)-5-methyl-4- isoxazolylcarbonylamino]-5,6-dimethyl- 2-phenyl-	5-Me 6-Me	Н	3-(2-Chlorophenyl)-5-methyl- 4-isoxazolyl	C ₂₇ H ₂₂ ClN ₃ O ₂	71.24 71.13	4.80 4.86	9.17 9.22	257-258	28 (62)
4d'	3-[(2-Chlorophenyl)-5-methyl-4- isoxazolylcarbonylamino]-4,5-dimethyl- 2-phenyl-	4-Me 5-Me	Н	3-(2-Chlorophenyl)-5-methyl- 4-isoxazolyl						
4e	3-(4-Chlorobenzoylamino)-5-methoxy- 2-phenyl-	5-OMe	Н	4-ClC ₆ H ₄	$C_{22}H_{17}CIN_2O_2$	$\frac{70.24}{70.12}$	$\frac{4.61}{4.55}$	$\frac{7.43}{7.29}$	140-141	32 (33)
4f	3-Benzylthioacetylamino-5-methoxy- 2-phenyl-	5-OMe	Н	PhCH ₂ SCH ₂	$C_{24}H_{22}N_2O_2S$	71.28 71.62	5.36 5.51	7.09 6.96	130-131	30 (44)
4g	3-(4-Chlorobenzoylamino)-1-methyl- 2-phenyl-	Н	Me	4-ClC ₆ H ₄	C ₂₂ H ₁₇ ClN ₂ O	73.04 73.23	$\frac{4.80}{4.75}$	7.72 7.76	180-181	22 (33)
4h	[3-(2-Chlorophenyl)-5-methyl-4-isoxazolylcarbonylamino]-1,2-diphenyl-	Н	Ph	3-(2-Chlorophenyl)-5-methyl- 4-isoxazolyl	C ₃₁ H ₂₂ ClN ₃ O ₂	73.78 73.88	$\frac{4.32}{4.40}$	8.12 8.34	125-126	27 (62)
4i	1-Benzyl-3-[3-(2-chlorophenyl)-5- methylisoxazolylcarbonylamino]- 2-phenyl-	Н	PhCH ₂	3-(2-Chlorophenyl)-5-methyl- 4-isoxazolyl	C ₃₂ H ₂₄ ClN ₃ O ₂	73.98 74.20	4.62 4.67	7.94 8.11	78-79	26 (62)
4j	1-Benzyl-3-(2-furoylamino)-2-phenyl-	Н	PhCH ₂	2-Furyl	$C_{26}H_{20}N_2O_2$	79.28 79.57	<u>5.05</u> 5.14	6.86 7.14	134-135	34
4k	3-Benzoylamino-5-fluoro-2-phenyl-	5-F	Н	Ph	$C_{21}H_{15}FN_2O$	76.22 76.35	4.62 4.58	8.39 8.48	100-101	44 (52)
41	5-Chloro-3-(2-oxo-2H-3-chromenylcarbonylamino)-2-phenyl-	5-Cl	Н	3-Coumarinyl	$C_{24}H_{15}CIN_2O_3$	69.39 69.49	$\frac{3.67}{3.64}$	6.50 6.75	220-221	38 (83)

^{*} The yields of the respective 3-(N-acylamino)-2-phenylindoles 4 not substituted at positions 1, 5, and 7 ($R = R^1 = H$) [1] are given in parentheses.

TABLE 2. The ¹H NMR Spectra of Compounds 4

Com-	Chemical shifts, δ , ppm (SSCC, J , Hz)*								
pound	Indole ring	2-Phenyl	R ²	\mathbb{R}^1	R	NH, br. s.			
1	2	3	4	5	6	7			
4a	7.33 (1H, d, <i>J</i> = 8.8, H-7); 7.24 (1H, s, H-4); 7.04 (1H, d, <i>J</i> = 8.8, H-6)	7.72 (2H, d, <i>J</i> = 8.0, H-2, H-6); 7.44 (2H, m, H-3, H-5); 7.34 (1H, m, H-4)	7.95 (2H, d, <i>J</i> = 7.9, H-2, H-6); 7.54 (2H, d, <i>J</i> = 7.9, H-3, H-5)	8.49 (1H, s)	2.40 (3H, s, CH ₃)	10.55			
4b	7.43 (1H, s, H-4); 7.35 (1H, m, H-7); 7.06 (1H, d, <i>J</i> = 7.6, H-6)	7.82 (2H, d, <i>J</i> = 6.6, H-2, H-6); 7.51 (2H, m, H-3, H-5); 7.40 (1H, m, H-4)	7.72 (1H, d, <i>J</i> = 7.6, H-5); 7.64 (1H, d, <i>J</i> = 7.3, H-3); 7.50-7.40 (2H, m, H-4, H-5)	8.22 (1H, s)	2.45 (3H, s, CH ₃)	9.55			
4c	7.19 (1H, t, <i>J</i> = 7.3, H-5); 6.99 (2H, d, <i>J</i> = 7.3, H-4, H-6)	7.65-7.46 (9H, m, C ₆ F	H ₅ , H-3, H-4, H-5, H-6)	9.50 (1H, s)	2.70 (3H, s, CH ₃)	10.98			
		2.51 (3H	I, s, CH ₃)						
4d	7.14 (1H, s, H-4); 7.01 (1H, s, H-7)								
4d'	7.08 (1H, d, <i>J</i> = 8.4, H-6); 6.90 (1H, d, <i>J</i> = 8.4, H-7)	7.71-7.33 (18)	H, m, H arom.)	9.56 (1H, s); 9.42 (1H, s)	2.73 (3H, s, CH ₃); 2.67 (3H, s, CH ₃); 2.31 (6H, s, CH ₃); 2.26 (3H, s, CH ₃); 2.24 (3H, s, CH ₃)	11.20; 11.07			
4e	7.34 (1H, d, <i>J</i> = 8.2, H-7); 6.92 (1H, d, <i>J</i> = 2.2, H-4); 6.83 (1H, dd, <i>J</i> = 8.2, <i>J</i> = 2.2, H-6)	7.71 (2H, d, <i>J</i> = 8.2, H-2, H-6); 7.42 (3H, m, H-3, H-4, H-5)	7.97 (2H, d, <i>J</i> = 8.8, H-2, H-6); 7.55 (2H, d, <i>J</i> = 8.8, H-3, H-5)	8.53 (1H, s)	3.77 (3H, s, OCH ₃)	9.57			

TABLE 2 (continued)

1	2	3	4	5	6	7
4f	7.30 (1H, d, <i>J</i> = 2.2, H-4); 6.91 (1H, d, <i>J</i> = 8.7, H-7); 6.83 (1H, d, <i>J</i> = 8.7, H-6)	7.94 (2H, d, <i>J</i> = 8.7, H-2, H-2); 7.47 (2H, d, <i>J</i> = 8.7, H-3, H-5); 7.30 (1H, m, H-4)	8.00 (2H, d, <i>J</i> = 8.2, H-3, H-5); 7.67 (1H, m, H-4); 7.53 (2H, d, <i>J</i> = 8.2, H-2, H-6); 3.89 (2H, s, CH ₂ –CO); 3.30 (2H, s, CH ₂ –C ₆ H ₅)	8.22 (1H, s)	3.79 (3H, s, OCH ₃)	9.53
		7.53-7.45 (9H, m, H ind., H arom.)		3.71 (3H, s, CH ₃)	_	8.35
4g	7.28 (1H, dd, <i>J</i> = 7.1, <i>J</i> = 8.0, H-5) 7.13 (1H, dd, <i>J</i> = 7.1, <i>J</i> = 7.7, H-6)	· I	7.83 (2H, d, J = 7.6, H-2, H-6)			
4h	7.52-7.17 (18H, m, H ind., H arom.)				_	7.70
			2.62 (3H, s, CH ₃)			
4i	7.40 (1H, m, H-4); 7.17 (1H, dd, J = 7.1, J = 8.0, H-6); 7.10 (1H, dd, J = 7.1, J = 7.3, H-5)		7.40-7.30 (4H, m, H-3, H-4, H-5, H-6); 2.57 (3H, s, CH ₃)	7.19-7.20 (3H, m, H-3, H-4, H-5); 6.85 (2H, d, <i>J</i> = 7.5, H-2, H-6); 5.32 (2H, s, CH ₂)	_	7.60
4j	7.50-7.35 (9H, m,	H ind., H arom.)	7.09 (1H, d, <i>J</i> = 3.4, H-3); 7.06 (1H, d, <i>J</i> = 1.7, H-5); 6.58 (1H, dd, <i>J</i> = 3.4, <i>J</i> = 1.7, H-4)	7.20 (3H, m, H-3,H-4, H-5); 6.90 (2H, d, <i>J</i> = 7.8, H-2, H-6); 5.38 (2H, s, CH ₂)	_	8.30
4k	7.45 (1H, m, H-7); 7.17 (1H, dd, $J_{H-F} = 9.9$, J = 2.5, H-4); 6.98 (1H, dd. d, $J_{H-F} = 10.2$, $J = 9.0$, $J = 2.5$, H-6)	7.74 (2H, d, <i>J</i> = 7.8, H-2, H-6); 7.60-7.50 (3H, m, H-3, H-4, H-5)	7.97 (2H, d, <i>J</i> = 7.8, H-2, H-6); 7.60 (2H, m, H-3, H-5); 7.50 (1H, m, H-4)	8.52 (1H, s)	_	9.75
41	7.50 (1H, m, H-4); 7.43 (1H, d, <i>J</i> = 9.2, H-7); 7.18 (1H, d, <i>J</i> = 9.2, H-6)	7.76 (2H, d, <i>J</i> = 7.8, H-2, H-6); 7.48 (2H, m, H-3, H-5); 7.38 (1H, m, H-4)	8.98 (1H, s, H-4); 7.89 (1H, d, <i>J</i> = 8.3, H-8); 7.80-7.65 (3H, m, H-5, H-6, H-7)	9.84 (1H, s)	_	10.32

^{*} The spectrum of compound **4d'** was recorded in DMSO-d₆.

General Procedure for the Production of Arylhydrazones (3). A mixture of hydrazine hydrochloride 1 (0.05 mol), acylamino ketone 2 (0.05 mol), and sodium acetate (0.05 mol) in the smallest amount of ethanol (5-10 ml) was boiled with a reflux condenser for 2 h. The precipitated sodium chloride was filtered from the hot solution. The filtrate was evaporated, and the remaining oil was crystallized (hydrazones 3a,c,d,k,m), or recrystallized without further purification to the aminoindoles 4 (hydrazones 3b,e,f,h,i,j,l).

ω-(4-Chlorobenzoylamino)acetophenone 4-Methylphenylhydrazone. Yield 66%; mp 86-85°C (ethanol). ¹H NMR spectrum, δ, ppm, J (Hz): 9.53 (1H, s, NH); 7.78 (2H, d, J = 8.4, C₆H₄-Cl-p, o- and o'-H); 7.58 (2H, d, J = 8.4, C₆H₄-Cl-p, m- and m'-H); 7.50 (2H, d, J = 6.6, N-C₆H₄-CH₃-p, o- and o'-H); 7.49-7.35 (5H, m, C₆H₅-C=N); 7.20 (1H, br. s, NH-C=O); 7.01 (2H, d, J = 8.4, N-C₆H₄-CH₃-p, m- and m'-H); 4.46 (2H, d, J = 6.2, CH₂); 2.17 (3H, s, CH₃). Found, %: C 69.86; H 5.37; N 11.26. C₂₂H₂₀ClN₃O. Calculated, %: C 69.93; H 5.33; N 11.12.

ω-[3-(2-Chlorophenyl)-5-methyloxazol-4-ylcarbonylamino]acetophenone 2-Methylphenylhydrazone (3c). Yield 60%; mp 90-91°C (isopropyl alcohol). ¹H NMR spectrum, δ, ppm, J (Hz): 9.51 (1H, s, NH); 7.68 (2H, d, J = 6.9, C₆H₅-C=N, o- and o'-H); 7.53 (1H, d, J = 8.3, C₆H₄-Cl-o, m-H); 7.40-7.35 (7H, m, CH arom.); 7.16 (1H, m, C₆H₄-Cl-o, p-H); 7.14 (2H, d, J = 8.3, C₆H₄-Cl-o, o'-H); 6.79 (1H, m, C₆H₄-Cl-o, m'-H); 6.73 (1H, br. s, NH-C=O); 4.47 (2H, d, J = 6.1, CH₂); 2.63 (3H, s, CH₃-isoxazole); 2.21 (3H, s, CH₃-Ph). Found, %: C 68.11; H 5.02; N 12.38. C₂₆H₂₃ClN₄O₂. Calculated, %: C 68.04; H 5.05; N 12.21.

ω-[3-(2-Chlorophenyl)-5-methylisoxazol-4-ylcarbonylamino]acetophenone 3,4-Dimethylphenylhydrazone (3d). Yield 70%; mp 115-116°C. ¹H NMR spectrum, δ, ppm, J (Hz): 9.54 (1H, s, NH); 7.67 (2H, d, J = 8.1, C₆H₅-C=N, o- and o'-H); 7.46 (1H, m, C₆H₄-Cl-o, o'-H); 7.40-7.30 (5H, m, CH arom.); 7.20 (1H, d, J = 8.1, C₆H₄-Cl-o, m-H); 7.00 (1H, d, J = 8.5, N-C₆H₃-Me₂, m'-H); 6.86 (1H, s, N-C₆H₃-Me₂, o-H); 6.84 (1H, d, J = 8.5, N-C₆H₃-Me₂, o'-H-5); 6.76 (1H, br. s, NH-C=O); 4.42 (2H, d, J = 6.4, CH₂); 2.64 (3H, s, CH₃-izoxazole); 2.23 (3H, s, CH₃-Ph); 2.19 (3H, s, CH₃-Ph). Found, %: C 68.65; H 5.30; N 12.01. C₂₇H₂₅ClN₄O₂. Calculated, %: C 68.57; H 5.33; N 11.85.

ω-(Benzoylamino)acetophenone 4-Fluorophenylhydrazone (3k). Yield 56%; mp 168-169°C (ethanol). ¹H NMR spectrum, δ, ppm, J (Hz): 10.20 (1H, s, NH); 7.91 (2H, d, J = 7.5, CO–C₆H₅, o- and o'-H); 7.83 (2H, d, J = 7.5, C₆H₅-C=N, o- and o-H); 7.74 (1H, br. s, NH–C=O); 7.55 (1H, m, CO–C₆H₅, p-H); 7.45-7.42 (4H, m, C₆H₅-C=N, m- and m'-H, CO–C₆H₅, m- and m'-H); 7.32 (1H, d, J = 6.9, C₆H₅-C=N, p-H); 7.21 (2H, d, J = 8.5, N–C₆H₄–F-p, o- and o'-H); 7.03 (2H, m, N–C₆H₄–F-p, m- and m'-H); 4.61 (2H, d, J = 6.3, CH₂). Found, %: C 72.28; H 5.20; N 11.96. C₂₁H₁₈FN₃O. Calculated, %: C 72.61; H 5.22; N 12.10.

ω-(3,4-Dimethoxyphenylacetylamino)acetophenone 4-Nitrophenylhydrazone (3m). Yield 70%; mp 168-169°C (isopropyl alcohol). ¹H NMR spectrum, δ, ppm, J (Hz): 10.79 (1H, s, NH); 8.12 (2H, d, J = 8.80, N-C₆H₄-NO₂-p, m- and m'-H); 7.87 (2H, d, J = 8.25, C₆H₅-C=N, o- and o'-H); 7.40 (4H, m, C₆H₅-C=N, m-, m'- and p-H, NH-C=O); 7.16 (2H, d, J = 8.80, N-C₆H₄-NO₂-p, o- and o'-H); 6.78 (3H, m, CH₂-C₆H₃-(OMe)₂); 4.42 (2H, d, J = 6.05, CH₂); 3.72 (3H, s, OCH₃); 3.65 (3H, s, OCH₃); 3.54 (2H, s, CO-CH₂). Found, %: C 64.72; H 5.46; N 12.40. C₂₄H₂₄N₄O₅. Calculated, %: C 64.28; H 5.39; N 12.49.

Production of Indoles (4). A. To a solution of the hydrazone **3** (0.03 mol) in ethanol (10 ml) we added a solution of thionyl chloride (0.09 mol) in ethanol (10 ml). The mixture was boiled with a reflux condenser for 4 h. The ammonium chloride that formed was filtered off. The alcohol was evaporated, and the residue was crystallized or the indoles **4a-d,g-m** were isolated by column chromatography (silica gel L $100\times250~\mu$, eluent 6:1 carbon tetrachloride—ethyl acetate).

B. To a solution of sodium 2-(4-methoxyphenyl)hydrazine sulfonate (0.04 mol) and ω -(4-chlorobenzoylamino)acetophenone or ω -(benzylthioacetylamino)acetophenone (0.03 mol) in ethanol (10 ml) we added a solution of thionyl chloride (0.09 mol) in ethanol (10 ml). The mixture was boiled with a reflux condenser for 8 h. The precipitate was filtered off. The alcohol was distilled, and the indoles **4e**,**f** were isolated by column chromatography (the same conditions as in the production of the indoles from the hydrazones). The obtained oil was then recrystallized from isopropyl alcohol.

REFERENCES

- 1. N. M. Przheval'skii, N. S. Skvortsova, and I. V. Magedov, Khim. Geterotsikl. Soedin., 1210 (2002).
- 2. N. M. Przheval'skii, L. Yu. Kostromina, and I. I. Grandberg, Khim. Geterotsikl. Soedin., 867 (1988).
- 3. D. L. Hughes, Org. Prep. and Proced. Int., 25, 607 (1993).
- 4. R. J. Sundberg, Indoles, Academic Press (1996).
- 5. B. Robinson, *The Fischer Indole Synthesis*, Wiley, New York (1982).
- 6. J. Altschul, *Berichte*, **25**, 1842 (1892).